Computational Prediction and Experimental Verification of New MAP Kinase Docking Sites and Substrates Including Gli Transcription Factors
نویسندگان
چکیده
In order to fully understand protein kinase networks, new methods are needed to identify regulators and substrates of kinases, especially for weakly expressed proteins. Here we have developed a hybrid computational search algorithm that combines machine learning and expert knowledge to identify kinase docking sites, and used this algorithm to search the human genome for novel MAP kinase substrates and regulators focused on the JNK family of MAP kinases. Predictions were tested by peptide array followed by rigorous biochemical verification with in vitro binding and kinase assays on wild-type and mutant proteins. Using this procedure, we found new 'D-site' class docking sites in previously known JNK substrates (hnRNP-K, PPM1J/PP2Czeta), as well as new JNK-interacting proteins (MLL4, NEIL1). Finally, we identified new D-site-dependent MAPK substrates, including the hedgehog-regulated transcription factors Gli1 and Gli3, suggesting that a direct connection between MAP kinase and hedgehog signaling may occur at the level of these key regulators. These results demonstrate that a genome-wide search for MAP kinase docking sites can be used to find new docking sites and substrates.
منابع مشابه
Computational investigation of ginsenoside F1 from Panax ginseng Meyer as p38 MAP Kinase Inhibitor: Molecular docking and dynamics simulations, ADMET analysis, and drug likeness prediction.
Ginsenoside F1 is a biologically active compound identified potential from Korean Panax ginseng Meyer. In the present study, the potential targets of ginsenoside F1 were investigated by computational target fishing approaches including ADMET prediction, biological activity prediction from chemical structure, molecular docking, and molecular dynamics methods. Results were suggested to express th...
متن کاملComputational investigation of ginsenoside F1 from Panax ginseng Meyer as p38 MAP Kinase Inhibitor: Molecular docking and dynamics simulations, ADMET analysis, and drug likeness prediction.
Ginsenoside F1 is a biologically active compound identified potential from Korean Panax ginseng Meyer. In the present study, the potential targets of ginsenoside F1 were investigated by computational target fishing approaches including ADMET prediction, biological activity prediction from chemical structure, molecular docking, and molecular dynamics methods. Results were suggested to express th...
متن کاملMode and specificity of binding of the small molecule GANT61 to GLI determines inhibition of GLI-DNA binding
The GLI genes, GLI1 and GLI2, are transcription factors that regulate target genes at the distal end of the canonical Hedgehog (HH) signaling pathway (SHH->PTCH->SMO->GLI), tightly regulated in embryonic development, tissue patterning and differentiation. Both GLI1 and GLI2 are oncogenes, constitutively activated in many types of human cancers. In colon cancer cells oncogenic KRAS-GLI signaling...
متن کاملA MAP kinase docking site is required for phosphorylation and activation of p90rsk/MAPKAP kinase-1
Activation of the various mitogen-activated protein (MAP) kinase pathways converts many different extracellular stimuli into specific cellular responses by inducing the phosphorylation of particular groups of substrates. One important determinant for substrate specificity is likely to be the amino-acid sequence surrounding the phosphorylation site; however, these sites overlap significantly bet...
متن کاملDocking sites on mitogen-activated protein kinase (MAPK) kinases, MAPK phosphatases and the Elk-1 transcription factor compete for MAPK binding and are crucial for enzymic activity.
Mitogen-activated protein kinase (MAPK) cascades control gene expression patterns in response to extracellular stimuli. MAPK/ERK (extracellular-signal-regulated kinase) kinases (MEKs) activate MAPKs by phosphorylating them; activated MAPKs, in turn, phosphorylate target transcription factors, and are deactivated by phosphatases. One mechanism for maintaining signal specificity and efficiency is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2010